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Abstract
The behaviour of the magnetization in a ferromagnetic metal/nonmagnetic
insulator/ferromagnetic metal/paramagnetic metal tunnel junction is studied, using the
nonequilibrium Keldysh formalism. The two ferromagnets are described using the single-band
Hubbard model. The left one is treated in the mean field approximation and the right
ferromagnet within a (nonequilibrium) spectral density approach which takes interactions
beyond the mean field into account. When a voltage is applied to the junction we observe a
change of the relative orientation of the two magnetizations, which can be switched from
parallel to antiparallel alignment and vice versa. This switching appears in a self-consistent
way, so there is no need to use half-classical methods like the Landau–Lifshitz–Gilbert equation
one. The dependence of the critical voltage at which the magnetization changes its sign on the
model parameters can be studied in a systematic way.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Current-induced switching of magnetization was proposed
by Slonczewski and Berger independently of each other in
1996 [1, 2]. Shortly afterwards it was confirmed by several
experimental groups [3–5]. The idea behind this effect is the
following: electrons in the conduction band of a ferromagnet
will align their spin direction with the magnetization to
minimize their energy. By applying a voltage they can
be transported through a nonmagnetic layer (either metallic
or insulating) to a second ferromagnet. Thus there is a
transfer of spin angular momentum between the ferromagnets.
This can act as a torque on the second magnetization.
If the current densities are high enough (typically >106–
107 A cm−2) this torque can be sufficient to destabilize the
magnetization and switch its orientation relative to the first
ferromagnet. Slonczewski showed that this effect can be
modelled in the framework of the Landau–Lifshitz–Gilbert
equation which was also used by several other authors [6–10].
However, this equation has several disadvantages. It is a
semiclassical, macroscopic equation which does not take the
quantum nature of spin into account. The magnetization
is treated as a classical vector which can take arbitrary
orientations in space. Strictly speaking, this is not correct,

since it consists of averages over spins which are quantized.
Another problem is that several important parameters such
as the Gilbert damping are still not completely understood
on a microscopic level [11, 12]. Furthermore it is hardly
possible to treat the electron–electron interaction, which may
play an important role for the switching, above the mean field
level. To address these shortcomings we want to formulate
a microscopic theory which is able to model current-induced
switching of magnetization without relying on the Landau–
Lifshitz–Gilbert equation.

The paper is organized in the following way. In the next
section we will present the model Hamiltonian. Since it will be
a non-trivial many-body problem it cannot be solved exactly.
Therefore we developed an approximate solution which will
be derived in section 3. The numerical results from the theory
will be discussed in section 4. The paper finishes with a short
summary in section 5.

2. The model

The Hamiltonian of the system is identical to the one used
in [13]:

H = HL + HLI + HI + HRI + HR + HRP + HP. (1)
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Figure 1. Schematic representation of a tunnel junction with applied voltage V . Two ferromagnets L and R are divided by an insulator I. To
the right of the second ferromagnet there is a paramagnet which acts as an electron reservoir. The black arrows symbolize the magnetization
direction, which is always up in the left ferromagnet and can be varied in the right one.

HL (R) describes the left (right) ferromagnet, HI the insulator
and HP the paramagnet. The two ferromagnets are given by
the Hubbard Hamiltonian

HM =
∑

kMσ

(εkM − VM)c†
kMσ ckMσ + UM

2

∑

iMσ

n̂iMσ n̂iM−σ , (2)

where M stands for either L or R. c(†)
kMσ is the annihilation

(creation) operator of an electron with wavevector kM and
spin σ in the region M . The Hubbard-UM determines the
interaction strength, n̂iMσ = c†

iMσ ciMσ is the occupation number
operator and VM is a voltage-dependent shift of the centre of
gravity.

The insulator and paramagnet are assumed to be non-
interacting. Thus they are described by the following
Hamiltonian:

HX =
∑

kX σ

(εkX − VX )d†
kX σ dkX σ (X = I, P). (3)

The construction operators in the non-interacting regions are
denoted by the letter d . VX is the shift of the centre of
gravity which is a result of the applied voltage V . We choose
VL = 0, VI = V/2, VR = V and VP = V . This choice will
lead to the behaviour shown in figure 1. The sign convention
is chosen in such a way that positive (negative) V will shift the
right regions to lower (higher) energies compared to the left
ferromagnet whose centre of gravity defines the zero point of
energy.

In order to get a finite current through the junction the four
regions have to be coupled. This is modelled by a hybridization
between neighbouring regions (M = L, R; X = I, P):

HM X =
∑

kM kX σ

(εkM kX c†
kMσ dkX σ + h.c.). (4)

The strength of the hybridization is determined by the
coupling constants εkM kX which we assume to be wavevector
independent and real, i.e. εkM kX ≡ εM X ≡ εX M . They will

be treated as parameters since it is not possible to determine
them self-consistently within the proposed theory. Since HM X

couples regions with different chemical potentials the system
will be out of equilibrium and the Keldysh formalism [14] has
to be used for the subsequent calculations.

The central quantity for the discussion of current-
induced switching of magnetization is the nonequilibrium
magnetization mR of the right ferromagnet. It can be expressed
through a lesser Green function defined as G<

kRσ (t, t ′) =
i〈c†

kRσ (t ′)ckRσ (t)〉 in the following way:

mR = nR,↑ − nR,↓

= 1

2π iN

∫ ∞

−∞
dE

∑

kR

[
G<

kR↑(E) − G<
kR↓(E)

]
, (5)

where nR,σ = 〈n̂R,σ 〉 is the occupation number of particles with
spin σ in the right ferromagnet. The first step for calculating
the lesser Green function is to determine the retarded one,
Gr

kRσ (E) = 〈〈ckRσ ; c†
kRσ 〉〉r

E . This task can be solved in a
straightforward way by the use of the equation of motion
method. One finds for the Green function

Gr
kRσ (E) = 1

E − εkR − �r
kRσ (E) − �r

kRσ (E)
. (6)

The two different self-energies which appear in the denom-
inator are related to the interactions due to the Hubbard
term (�r

kRσ (E)) and the transport due to the hybridization
(�r

kRσ (E)). The interaction self-energy is defined in the usual
way:

�r
kRσ (E)Gr

kRσ (E) = 〈〈[ckRσ , H int
R ]−; c†

kRσ 〉〉r
E , (7)

where H int
R is the Hubbard part of the Hamiltonian (2). The

transport self-energy follows immediately from the equation
of motion approach. Thus we will just state the results here. Its
retarded and lesser components are given by

�
r(<)
kRσ (E) =

∑

kI

ε2
MIG

(L),r(<)
kIσ

(E) +
∑

kP

ε2
RPgr(<)

kPσ
(E) (8)

2
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G(L),r(<)
kIσ

(E) is the Green function of the insulator when it is
only coupled to the left ferromagnet:

G(L),r
kIσ

(E) = 1

E − εkI − ∑
kL

ε2
MIg

r
kLσ (E)

. (9)

The equilibrium Green functions of the left ferromagnet and
the paramagnet, gr

kLσ (E) and gr
kPσ

(E), are given by

gr
kMσ (E) = 1

E − εkM − �r
kMσ (E)

(M = L, P). (10)

Since the paramagnet is assumed to be non-interacting its self-
energy is simply �r

kPσ (E) = −i0†. The self-energy of the
left ferromagnet which is not trivial due to the interactions will
be specified later on. Now that the retarded Green function
is known, the lesser Green function follows from the Keldysh
equation which in this case reads [15]

G<
kRσ (E) = (

�<
kRσ (E) + �<

kRσ (E)
) |Gr

kRσ (E)|2. (11)

The lesser transport self-energy was already given in (8) where
the lesser components of the two Green functions on the right-
hand side are

G(L),<
kIσ

(E) =
∑

kL

ε2
MIg

<
kLσ (E)|G(L),r

kIσ
(E)|2 (12)

and

g<
kMσ (E) = −2i fM(E) Im gr

kMσ (E) (M = L, P). (13)

fM (E) is the Fermi function of the lead M with chemical
potential μM . The potentials are closely connected to the
applied voltage by the relation μL − μP = V . Apart from
the interaction self-energies the above expressions form a
closed set of equations for calculating the magnetization of
the switching ferromagnet. The determination of the right
interaction self-energy is no easy task, due to the fact that the
Hubbard model is not exactly solvable and that one cannot use
equilibrium relations, such as the spectral theorem, which often
play an important role for the self-energy calculations. These
difficulties can be overcome by a so-called nonequilibrium
spectral density approach (NSDA) which we will present in
detail in the next part of the paper.

3. The NSDA

The NSDA is based on a high-energy expansion of the retarded
Green function. By means of its spectral representation, which
still holds in nonequilibrium, it can be expressed using the
spectral density SkRσ (t, t ′) = 1

2π
〈[ckRσ (t), c†

kRσ (t ′)]+〉:
Gr

kRσ (E) =
∫ ∞

−∞
dE ′ SkRσ (E ′)

E − E ′

= 1

E

∫ ∞

−∞
dE ′ SkRσ (E ′)

1 − E ′
E

= 1

E

∞∑

n=0

∫ ∞

−∞
dE ′

(
E ′

E

)n

SkRσ (E ′)

=
∞∑

n=0

M (n)
kRσ

En+1
. (14)

In the last step the definition of the spectral moments

M (n)
kRσ =

∫ ∞

−∞
dE En SkRσ (E) n = 0, 1, 2, . . . (15)

was used. Alternatively the moments can be calculated using
the following relation:

M (n)
kRσ = 〈[[. . . [[ckRσ , H ]−, H ]− . . . , H ]−,

[H, . . . [H, c†
kRσ ]− . . .]−]+〉. (16)

The total number of commutators within the anticommutator
on the right-hand side has to be equal to n. This relation
is quite useful because it allows one, at least in principle, to
calculate the moments exactly to arbitrary order with a given
Hamiltonian. The Green function (6) can be rewritten as

EGr
kRσ (E) = 1+(εkR +�r

kRσ (E)+�r
kRσ (E))Gr

kRσ (E). (17)

Inserting the expansion (14) and the corresponding expansions
for the self-energies

�r
kRσ (E) =

∞∑

m=0

C (m)
kRσ

Em
, �r

kRσ (E) =
∞∑

m=0

D(m)
kRσ

Em
(18)

into this expression yields a system of equations for the
unknown coefficients C (m)

kRσ which determine the interaction
self-energy. Since the spectral moments on each side of the
equation are not energy dependent, the relation can only hold
if the prefactors of the 1/E terms are identical in every power
of n. Comparing them leads to the following expressions for
the first few self-energy coefficients:

C (0)
kRσ = M (1)

kRσ

M (0)
kRσ

− εkR − D(0)
kRσ (19)

C (1)
kRσ = M (2)

kRσ

M (0)
kRσ

−
(

M (1)
kRσ

M (0)
kRσ

)2

− D(1)
kRσ (20)

C (2)
kRσ = M (3)

kRσ

M (0)
kRσ

− 2
M (1)

kRσ M (2)
kRσ

(M (0)
kRσ )2

+
(

M (1)
kRσ

M (0)
kRσ

)3

− D(2)
kRσ . (21)

To solve these equations one needs the first four moments
of the right ferromagnet and the first three moments
of the transport self-energy. But even without their
explicit knowledge one can make some important statements.
The ansatz (18) will always lead to a real self-energy,
i.e. quasiparticle damping cannot be taken into account by this
method. The advanced and retarded self-energies will thus
be equal, �r

kRσ (E) = �a
kRσ (E). Additionally one can show,

e.g. by using the ansatz of Ng [16], that real self-energies
always lead to vanishing lesser self-energies, i.e. �<

kRσ (E) = 0.
Therefore the Keldysh equation can be simplified to

G<
kRσ (E) = �<

kRσ (E)|Gr
kRσ (E)|2. (22)

The next step will be the calculation of the spectral moments
of the right ferromagnet which are given by

M (n)
kRσ = 1

N

∑

iR jR

e−ikR·(RiR −R jR )〈[[. . . [ciRσ , H ]− . . . , H ]−,

[H . . . [H, c†
jRσ ]− . . .]−]+〉. (23)

3
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This is a tedious but straightforward procedure. Here, we will
give only the results:

M (0)
kRσ = 1 (24)

M (1)
kRσ = εkR + URnR,−σ (25)

M (2)
kRσ = ε2

kR
+ 2URεkR nR,−σ + U 2

RnR,−σ +
∑

X=I,P

ε2
RX (26)

M (3)
kRσ = ε3

kR
+

∑

X=I,P

(
2εkRε

2
RX + T0,Xε2

RX

)

+ UR

{
3ε2

kR
nR,−σ + 2

∑

X=I,P

ε2
RX nR,−σ + B1,−σ (kR)

}

+ U 2
R{((2 + nR,−σ )εkR + T0,R)nR,−σ + BS,−σ + BT,−σ

+ BW,−σ (kR)} + U 3
RnR,−σ . (27)

T0,X is the centre of gravity of the band in region X and the
band corrections which appear in the third moment are defined
as

B1,−σ (kR) = 1

N

∑

X=I,P

∑

iR jRiX

e−ikR·(RiR −R jR )TiR jR

× (TiRiX 〈c†
iR−σ diX −σ 〉 − TiX iR〈d†

iX −σ ciR−σ 〉) (28)

BS,−σ = 1

N

∑

iR jR

TiR jR〈c†
iR−σ c jR−σ (2niRσ − 1)〉 (29)

BT,−σ = 1

N

∑

X=I,P

∑

iRiX

TiX iR〈d†
iX −σ ciR−σ (2niRσ − 1)〉 (30)

BW,−σ (kR) = 1

N

∑

iR jR

TiR jR e−ikR·(RiR −R jR )(〈n̂iR−σ n̂ jR−σ 〉

− n2
R,−σ − 〈c†

jRσ c†
jR−σ ciR−σ ciRσ 〉 − 〈c†

jRσ c†
iR−σ c jR−σ ciRσ 〉).

(31)

All the correlation functions which appear in the above
equations have to be calculated within the Keldysh formalism.
For B1,−σ (kR) this is quite easy, because it can be reduced
to another known quantity. Fourier transformation to the
wavevector dependence leads to

B1,−σ (kR) = 1

N

∑

X=I,P

∑

qRkX

εkR(εRX 〈c†
qR−σ dkX −σ 〉

− εXR〈d†
kX −σ cqR−σ 〉)

= 2i

N

∑

X=I,P

∑

qRkX

εkRεRX Im(〈c†
qR−σ dkX −σ 〉)

= − 2i

N

∑

X=I,P

∑

qRkX

εkRεRX Re(G<
kX qR−σ ), (32)

where the ‘mixed’ Green function G<
kX qR−σ (t, t ′) =

i〈c†
qR−σ (t ′)dkX −σ (t)〉 was introduced. On the other hand one

can show that

〈Ṅσ
R 〉 = i〈[H, Nσ

R ]−〉
= i

∑

qR

〈[H, n̂qR]−〉

= −2
∑

X=I,P

∑

qRkX

εRX Re(G<
kX qR−σ ). (33)

Therefore B1,−σ (kR) will be proportional to the time-
dependent change of total particle number in the right

ferromagnet. Since the theory is not explicitly time dependent,
this term will always be zero. Thus B1,−σ (kR) will vanish and
can be neglected.

Compared to that of the first band correction, the
calculation of BW,−σ (kR) is quite a bit harder, since it will
depend on the wavevector. However, in other works it was
shown that this dependence can be neglected without changing
the magnetic behaviour of the system very considerably [17].
Thus we will only use the average over all wavevectors:

BW,−σ ≡ 1

N

∑

kR

BW,−σ (kR)

= T0,R{nR,−σ (1 − nR,−σ ) − 2〈n̂iR−σ n̂iRσ 〉}. (34)

For iR = jR there is a close resemblance between BW,−σ and
BS,−σ . They can be combined to a single-band correction:

BSW,−σ ≡ BS,−σ + BW,−σ = −T0,Rn2
R,−σ

+ 1

N

∑

iR jR

(TiR jR − T0,R)〈c†
iR−σ c jR−σ (2n̂iRσ − 1)〉. (35)

The higher correlation function which is part of this band
correction can be reduced to a single-particle Green function.
In order to show this one first has to multiply

[H, c†
iR−σ ]− =

∑

lR

TlRiR c†
lR−σ + URn̂iRσ c†

iR−σ

+
∑

X=I,P

∑

iX

TiX iR d†
iX −σ (36)

with c jR−σ from the right and then to form the average to get

〈[H, c†
iR−σ ]−c jR−σ 〉 =

∑

lR

TlR iR〈c†
lR−σ c jR−σ 〉

+ UR〈n̂iRσ c†
iR−σ c jR−σ 〉 +

∑

X=I,P

∑

iX

TiX iR〈d†
iX −σ c jR−σ 〉.

(37)

On the right-hand side one notices the correlation function of
interest, apart from a trivial commutation. With the help of the
Heisenberg equation of motion the left-hand side can also be
reduced to a one-particle Green function:

〈[H, c†
iR−σ ]−(t)c jR−σ (t ′)〉 = −i

∂

∂ t
〈c†

iR−σ (t)c jR−σ (t ′)〉

= − ∂

∂ t
G<

jRiR−σ (t ′, t)

= − 1

2π

∂

∂ t

∫ ∞

−∞
dE G<

jRiR−σ (E)e−iE(t ′−t)

= − i

2π

∫ ∞

−∞
dE EG<

jRiR−σ (E)e−iE(t ′−t). (38)

The two remaining correlation functions can be replaced by
lesser Green functions, too:

〈c†
lR−σ (t)c jR−σ (t ′)〉 = − i

2π

∫ ∞

−∞
dEG<

jRlR−σ (E)e−iE(t ′−t)

(39)

〈d†
iX −σ (t)c jR−σ (t ′)〉 = − i

2π

∫ ∞

−∞
dEG<

jRiX −σ (E)e−iE(t ′−t).

(40)

4
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Putting these equations into the expression (37) for t = t ′ and
transforming to wavevectors leads to

〈n̂iRσ c†
iR−σ c jR−σ 〉 = i

2π NUR

∑

kR

eikR·(R jR −RiR )

×
∫ ∞

−∞
dE

[
(−E + εkR)G<

kR−σ (E)

+
∑

X=I,P

∑

kX

G<
kRkX −σ (E)εXR

]
. (41)

The ‘mixed’ Green function GkRkX σ is closely related to the
Green function of the right ferromagnet through the relation

∑

X=I,P

∑

kX

GkRkX σ εXR = GkRσ�kRσ . (42)

Applying the analytic continuation rules given by Lan-
greth [15, 18] to this equation to get its lesser component yields

∑

X=I,P

∑

kX

G<
kRkX σ εkX kR = Gr

kRσ�<
kRσ + G<

kRσ �a
kRσ . (43)

Thus the integral core can be written as

[(−E + εkR)G<
kR−σ +

∑

X=I,P

∑

kX

G<
kRkX −σ εXR]

= (−E + εkR + �r
kR−σ )G<

kR−σ

+ Gr
kR−σ �<

kR−σ Ga
kR−σ (Ga

kR−σ )−1

= −�a
kR−σ G<

kR−σ (44)

which leads to the following expression for the correlation
function:

〈n̂iRσ c†
iR−σ c jR−σ 〉 = − i

2π NUR

∑

kR

eikR·(R jR−RiR )

×
∫ ∞

−∞
dE�a

kR−σ (E)G<
kR−σ (E). (45)

Therefore the band correction BSW,−σ reads

BSW,−σ = −T0,Rn2
R,−σ − i

2π N

∑

kR

(εkR − T0,R)

×
∫ ∞

−∞
dE

[(
2

UR
�a

kR−σ (E) − 1

)
G<

kR−σ (E)

]
. (46)

The last remaining band correction is BT,−σ . Its structure is
very similar to that of BSW,−σ . Thus the calculation of the
higher correlation function runs along the same lines as were
shown above. For the sake of brevity we will not go into the
details of this calculation. The result is

BT,−σ = − i

2π N

∑

kR

∫ ∞

−∞
dE

[
(E − εkR − �a

kR−σ (E))

×
(

2

UR
�r

kR−σ (E) − 1

)
G<

kR−σ (E) + 2

UR
�<

kR−σ (E)

]
.

(47)

All non-vanishing band corrections which are part of the
third moment can be merged into a single one which we call
BR,−σ :

nR,−σ (1 − nR,−σ )BR,−σ ≡ T0,Rn2
R,−σ + BSW,−σ + BT,−σ

= − i

2π N

∑

kR

∫ ∞

−∞
dE

[(
2

UR
�r

kR−σ (E) − 1

)

× (E − T0,R − �r
kR−σ (E))G<

kR−σ (E) + 2

UR
�<

kR−σ (E)

]
.

(48)

Thus the first four moments of the right ferromagnet are
known. For the determination of the self-energy one
additionally needs the first three moments of the transport
self-energy. It can be split into two parts which describe the
coupling to the insulator and the paramagnet, respectively:

�r
kRσ (E) =

∑

kI

ε2
RIG

(L),r
kIσ

(E) +
∑

kP

ε2
RPgr

kPσ
(E)

=
∞∑

m=0

∑
X=I,P

∑
kX

ε2
RX M (m)

kX σ

Em+1

!=
∞∑

m=0

D(m)
kRσ

Em
. (49)

The first two moments of both the insulator and the paramagnet
are almost trivial. For X = I, P one finds

M (0)
kX σ = 1, M (1)

kX σ = εkX . (50)

By comparison with these moments the first three D(m)
kRσ can be

easily determined:
D(0)

kRσ = 0 (51)

D(1)
kRσ =

∑

X=I,P

ε2
RX (52)

D(2)
kRσ =

∑

X=I,P

ε2
RX T0,X . (53)

This is all the information that one needs to calculate the
coefficients of the interaction self-energy. Putting the moments
into equations (19)–(21) yields

C (0)
kRσ = URnR,−σ (54)

C (1)
kRσ = U 2

RnR,−σ (1 − nR,−σ ) (55)

C (2)
kRσ = U 2

RnR,−σ (1 − nR,−σ )(BR,−σ + T0,R)

+ U 3
RnR,−σ (1 − nR,−σ )2. (56)

For high energies it is permissible to restrict the expansion (18)
to the lowest orders of 1/E . Therefore the following
approximation should be valid in this limit:

�r
kRσ (E) = C (0)

kRσ + C (1)
kRσ

E
+ C (2)

kRσ

E2
+ · · ·

= C (0)
kRσ + C (1)

kRσ

E

(
1 + C (2)

kRσ

C (1)
kRσ E

+ · · ·
)

≈ C (0)
kRσ + C (1)

kRσ

E − C(2)
kRσ

C(1)
kRσ

= URnR,−σ

E − BR,−σ − T0,R

E − BR,−σ − T0,R − UR(1 − nR,−σ )
. (57)
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Figure 2. (a) Magnetization of the right ferromagnet as a function of the strength of hybridization εMI between the insulator and the
ferromagnets without applied voltage. For comparison reasons the absolute value of the antiparallel magnetization is shown. (b) The QDOS
of the right ferromagnet for different hybridization strengths and parallel alignment. Only the lower Hubbard bands are shown. Parameters
from table 1 were used.

This is the main result for the NSDA self-energy. It formally
coincides with the equilibrium spectral density approximation
(SDA) [19], but they are by no means equal, because of the
band correction BR,−σ . In equilibrium it can be calculated
using

nR,−σ (1 − nR,−σ )BSDA
R,−σ = 1

N

∑

kR

(εkR − T0,R)

×
∫ ∞

−∞
dE fR(E)

(
2

UR
(E − εkR) − 1

)
SkR−σ (E), (58)

which is obviously not the same as (48). However, one can
show that the NSDA band correction is reduced to (58) in the
equilibrium limit εMI, εRP → 0, i.e. the SDA is a limiting case
of the NSDA.

4. Numerical results

For the numerical evaluation of the theory we used the mean
field approximation for the left ferromagnet, �r

kLσ (E) =
ULnL,−σ . On choosing UL large it will become a half-
metal, i.e. only electrons of one spin direction are present
near the Fermi energy. The spin axis of the left ferromagnet
is chosen as fixed, so its majority electrons will always be
spin up. Thus its magnetization is positive. The right
ferromagnet is aligned parallel (antiparallel) to the left one if
its magnetization is positive (negative). We already showed
that the proposed theory is indeed able to model current-
induced switching of magnetization in another paper [13].
The magnetization shows a hysteresis-like behaviour in the
dependence on the applied voltage. This can be explained
in terms of the quasiparticle density of states (QDOS) of the
two ferromagnets. A hybridization between two bands will
lead to a repulsion between them. How strong this repulsion
will be depends on three factors: the hybridization strength,
the energetic distance of the bands and their spectral weight.
The repulsion only acts between bands with the same spin.
With these observations it is possible to completely explain the
magnetization behaviour.

In this paper we want to study the parameter dependences
of the magnetization and their influence on the switching
behaviour. The variation of the critical current which changes
the sign of the magnetization is of special interest. It can
be plotted in the form of a phase diagram where regions
with parallel and antiparallel alignment are shown. At least
in principle, one has to plot two phase diagrams for each
parameter, one starting with parallel the other with antiparallel
alignment. On the other hand, one voltage semiaxis would
always be trivial, since e.g. for parallel orientation positive
voltages are never able to switch the magnetization. The phase
diagram would consist of one phase only. The same holds
for antiparallel alignment and negative voltages. Therefore
one can combine the two phase diagrams into a single one
by leaving out the uninteresting single-phase regions. In
the resulting phase diagram positive (negative) voltages mean
that the calculation was started with antiparallel (parallel)
orientation.

4.1. The hybridization strength

The magnetization of the right ferromagnet without any
applied voltage is shown in figure 2. For vanishing
hybridization strength, εMI = 0 eV, it is identical for the
two alignments. Since in this case the ferromagnet is only
coupled to the paramagnet, this is to be expected, because
there is no preferred orientation for the spin. Therefore
the distinction between parallel and antiparallel becomes
meaningless. The only difference between the magnetizations
is their sign. With increasing hybridization strength the
magnetization increases for both alignments. For small εMI

the curves are almost identical. Above εMI ≈ 0.3 eV a
small splitting becomes visible which gets enhanced above
εMI ≈ 0.45 eV. For higher hybridization strengths both
magnetizations grow approximately linearly and the slope of
the antiparallel curve is slightly higher. The reason for this
increase is the repulsion between left and right spin up bands.
It will be stronger for higher hybridization. For antiparallel
orientation the right spin up band will be above the left one,

6



J. Phys.: Condens. Matter 22 (2010) 026003 N Sandschneider and W Nolting

Figure 3. (a) Voltage-dependent magnetization curves of the right ferromagnet for different hybridization strengths εMI. (b) Dependence of
the critical voltage on the hybridization strength. Positive voltages start from parallel, negative voltages from antiparallel alignment. The cases
of positive (negative) voltages starting with parallel (antiparallel) alignment are not shown because they are trivial since the phases are always
stable, as can be seen in the left figure. Parameters from table 1 were used.

so growing εMI will move it to higher energies. Since spin up
is the minority spin direction in the right ferromagnet in this
situation, this results in an increase of the magnetization. For
parallel orientation both spin up bands lie at the same energy.
Therefore there is no big movement of the whole band, but
only a dislocation of spectral weight away from the common
centre of gravity which can be seen in figure 2. Thus the
magnetization will increase in this case, too, but not so strongly
as for antiparallel alignment. However, the relative difference
between the two orientations is not very large.

If the hybridization strength is too low, the V = 0 phases
remain stable. This can be seen for the ε = 0.2 eV curve
in the left picture of figure 3 and also, in a more systematic
way, in the phase diagram on the right. There is only a
small change of magnetization: for negative voltages it is
slightly reduced, while for positive voltages it is increased.
But this change is not strong enough to destabilize the system.
Only if the hybridization exceeds a certain value will it be
possible to change the direction of magnetization by applying
a voltage. Since the current is proportional to the hybridization
strength that means that there is a critical current below which
it will not be possible to switch the magnetization. This is in
agreement with experimental observations [20]. The critical
hybridization strength is slightly lower for parallel alignment
than for antiparallel orientation (εMI = 0.27 eV compared
to εMI = 0.31 eV). This disagreement is caused by the
already mentioned fact that in the parallel case the current is
determined by the majority bands while in the antiparallel case
it will be carried by the minority band. This leads to a lower
current, and thus a higher hybridization strength is needed to
reach the critical current density. After switching becomes
possible above the critical threshold, a further increase of
εMI will lower the critical voltage, so a reorientation of the
magnetization will be easier. For higher hybridizations this
behaviour is reversed again, i.e. the switching point moves
to higher voltages. This is caused by an increase of the
magnetization itself as can be seen in figure 2. One should
note the asymmetric behaviour of the magnetization: the
transition from parallel to antiparallel is only possible for

Table 1. Standard parameters. In all subsequent calculations these
values were used, unless stated otherwise.

Occupation number n = 0.7

Coulomb interaction strength (eV) UL = 20
UR = 4

Hybridization strength (eV) εMI = 0.5
εRP = 0.05

Centre of gravity (eV) T0,I = 5
T0,R = T0,L = 0

Bandwidth (eV) WL = 3
WI = 1
WR = 2
WP = 5

Temperature (K) T = 0

negative voltages, while the inverse transition happens for
positive voltages only. This is one of the hallmarks of current-
induced switching of magnetization [21].

4.2. The Coulomb interaction strength

The dependence of the magnetization of the right ferromagnet
on the Coulomb interaction strength UR is shown in figure 4.
A critical UR,c ≈ 1 eV will be necessary to get a finite
magnetization for both alignments. Above this critical
interaction strength the magnetization strongly increases and
will go into saturation for higher UR. Compared to the
(equilibrium) SDA magnetization, which is shown as a dotted
line, the NSDA has a smaller critical interaction strength and
the transition to saturation is much faster. Also the saturation
value is higher. The last point is a consequence of the
fact that the occupation number of the right ferromagnet is
not fixed in nonequilibrium, contrary to the equilibrium case.
The value of nR = nR,↑ + nR,↓ is a result of the position
of the chemical potentials in the two leads. For n = 0.7
in the leads we find nR = 0.77 for the right ferromagnet
which is exactly the saturation value of the magnetization. The
relative orientation of the magnetization plays no important
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Figure 4. Magnetization of the right ferromagnet for both alignments
as a function of Coulomb interaction strength UR without applied
voltage. For comparison reasons the absolute value of the antiparallel
magnetization is shown. The dotted line is the equilibrium SDA
magnetization. Parameters from table 1 were used.

role since the P and AP curves are virtually identical. Both
orientations behave in a similar way to the SDA, with the
above mentioned differences. The higher magnetic stability
of the nonequilibrium system results from the coupling to the
fully polarized left ferromagnet. This will obviously increase
the probability for creating a spin asymmetry in the right
ferromagnet.

The voltage-dependent magnetization curves and the
corresponding phase diagram are shown in figure 5. Since the
right ferromagnet does not have a finite magnetization below
UR = 1 eV, there cannot be switching below this value either.
However, due to the current the magnetization will be non-zero
if a voltage is applied. For positive voltages spin up electrons
will flow from the left to the right ferromagnet, resulting in
a positive magnetization, i.e. parallel alignment. For negative
voltages the situation is reversed, which leads to antiparallel
orientation as can be seen in the phase diagram.

Above UR = 1 eV there will be a finite magnetization
for both alignments, even without an applied voltage. For all
higher Coulomb interaction strengths the system will show a

transition from antiparallel to parallel for positive voltages and
from parallel to antiparallel for negative voltages, respectively.
Both from the voltage-dependent magnetization curves and
from the phase diagram one can conclude that the critical
voltage needed for switching the magnetization increases with
increasing UR. Since the right magnetization also grows
with increasing UR this is a direct consequence of the higher
magnetic stability of the system. Therefore higher voltages
(currents) are needed for a reorientation.

5. Conclusion

We developed a microscopic model of a magnetic tunnel
junction for the description of current-induced switching
of magnetization. The ferromagnets were described using
the single-band Hubbard model and the coupling between
the regions was simulated by a hybridization between
neighbouring bands. Since the Hubbard model is not exactly
solvable we further developed the so-called NSDA which
allows a self-consistent calculation of the magnetization taking
into account interactions beyond the mean field level. For
the numerical evaluation the left ferromagnet was treated
in the mean field approximation and the right one in the
NSDA. It was shown that the repulsion between the bands due
to the hybridization is responsible for getting the switching
behaviour. The dependence of the critical voltage at which
the magnetization switches its sign on the model parameters
can be studied in a systematic way. We presented results for
a variation of the hybridization strength εMI and the Coulomb
interaction strength UR of the switching magnet. The results
indicate that a certain critical εMI is necessary to get switching.
This is in qualitative agreement with experiment, because the
tunnelling current is also proportional to εMI. With increasing
UR the magnetic stability of the ferromagnet is enhanced. Thus
switching will be more difficult. This is also an expected
result. Therefore we conclude that the model is indeed able
to qualitatively describe the phenomenon of current-induced
switching of magnetization.

Figure 5. Left: voltage-dependent magnetization curves of the right ferromagnet for different Coulomb interaction strengths UR. Right:
dependence of the critical voltage on UR. Positive voltages start from parallel, negative voltages from antiparallel alignment. Parameters from
table 1 were used.
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